Proinflammatory phenotype of perivascular adipocytes.
نویسندگان
چکیده
Perivascular adipose tissue (PVAT) directly abuts the lamina adventitia of conduit arteries and actively communicates with the vessel wall to regulate vascular function and inflammation. Mounting evidence suggests that the biological activities of PVAT are governed by perivascular adipocytes, a unique class of adipocyte with distinct molecular and phenotypic characteristics. Perivascular adipocytes surrounding human coronary arteries (pericoronary perivascular adipocytes) exhibit a reduced state of adipogenic differentiation and a heightened proinflammatory state, secreting ≤50-fold higher levels of the proinflammatory cytokine monocyte chemoattractant peptide-1 compared with adipocytes from other regional depots. Thus, perivascular adipocytes may contribute to upregulated inflammation of PVAT observed in atherosclerotic human blood vessels. However, perivascular adipocytes also secrete anti-inflammatory molecules such as adiponectin, and elimination of PVAT in rodent models has been shown to augment vascular disease, suggesting that some amount of PVAT is required to maintain vascular homeostasis. Evidence in animal models and humans suggests that inflammation of PVAT may be modulated by environmental factors, such as high-fat diet and tobacco smoke, which are relevant to atherosclerosis. These findings suggest that the inflammatory phenotype of PVAT is diverse depending on species, anatomic location, and environmental factors and that these differences are fundamentally important in determining a pathogenic versus protective role of PVAT in vascular disease. Additional research into the mechanisms that regulate the inflammatory balance of perivascular adipocytes may yield new insight into, and treatment strategies for, cardiovascular disease.
منابع مشابه
Integrative Physiology Proinflammatory Phenotype of Perivascular Adipocytes Influence of High-Fat Feeding
Adipose tissue depots originate from distinct precursor cells, are functionally diverse, and modulate disease processes in a depot-specific manner. However, the functional properties of perivascular adipocytes, and their influence on disease of the blood vessel wall, remain to be determined. We show that human coronary perivascular adipocytes exhibit a reduced state of adipocytic differentiatio...
متن کاملProinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding.
Adipose tissue depots originate from distinct precursor cells, are functionally diverse, and modulate disease processes in a depot-specific manner. However, the functional properties of perivascular adipocytes, and their influence on disease of the blood vessel wall, remain to be determined. We show that human coronary perivascular adipocytes exhibit a reduced state of adipocytic differentiatio...
متن کاملHuman coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis.
Inflammatory cross talk between perivascular adipose tissue and the blood vessel wall has been proposed to contribute to the pathogenesis of atherosclerosis. We previously reported that human perivascular (PV) adipocytes exhibit a proinflammatory phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To gain a global view of the genomic basis of biologic differences...
متن کاملCinnamon Extract Changes the Expression of miRNAs26-b, 29a, 223 and320 in Insulin Resistant Adipocytes
Objective: Insulin resistance (IR) is the major cause in Type 2 diabetes mellitus (T2DM). Expression of some miRNAs can be changed in response to a drug treatment for IR, and used as the biomarker in IR. This study set out to determine the effect of cinnamon extract (cinnamaldehyde) on some miRNAs expression in IR adipocytes. Materials and Methods: In this In-vitro study the 3T3L1 cells were e...
متن کاملDistinct adipocyte progenitor cells are associated with regional phenotypes of perivascular aortic fat in mice
OBJECTIVE Perivascular adipose tissue depots around the aorta are regionally distinct and have specific functional properties. Thoracic aorta perivascular adipose tissue (tPVAT) expresses higher levels of thermogenic genes and lower levels of inflammatory genes than abdominal aorta perivascular adipose tissue (aPVAT). It is not known whether this distinction is due to the in-vivo functional env...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 34 8 شماره
صفحات -
تاریخ انتشار 2014